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Influence of shear flow on the formation of rings in wormlike micelles:
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We study the influence of shear flow on the formation of rings in a generic reversible palfERE-O
model, representative for wormlike micelles. Under equilibrium conditions, rings are dominating in dilute
solutions, while linear chains are dominating in strongly overlapping and concentrated solutions. We find that
shear flow induces a net shift of micellar mass from linear chains to rings. At the same time, the average
aggregation size of linear chains is decreasing, while the average aggregation size of rings is increasing. We
hypothesize that the increased abundance and size of rings are caused by a decreased entropy gain associated
with ring opening under shear flow. Linear chains and rings are elongated in the flow direction and contracted
in the gradient direction. This leaves an essentially two-dimensional free volume, which two newly created
chain ends can explore after being disconnected. We study the ratio of ring and linear chain distribution
functions to substantiate this hypothesis. Finally, we study the rheology and discuss how the observed increase
of ring abundance can provide a positive feedback between strain and ring connectivity. Such a positive
feedback can contribute to shear thickening behavior, observed in micellar solutions near the overlap

concentration.
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[. INTRODUCTION ing process. Their scenario required a positive feedback be-

tween stress or strain and ring interlinking. It remained un-

Surfactant mqlecules in solution are known to spontaneaear, however, what the precise mechanism of the feedback
ously assemble into complex structufés Among these are would be

elor_lgated cyIin_dr?caI assembli_e_s (.Jf such great length as to be The aim of this paper is to investigate the influence of
flexible and coil-like. The equilibrium statistics and dynam- a1 fiow on ring formation in a micellar solution. We will
ics of these so-called wormlike micelles resemble those of Rhow that the shear flow induces an increase in the size and

polym;ar sorllgtlrc])nLZ]. '.*OW;VGFB cqntrz_aryf.to dclass;]cal_poly- fabundance of micellar rings, thus providing one possible
mers for which the size distribution is fixed at the time o positive feedback mechanism.

synthesis, a micellar chain can break spontaneously any- Our results will be obtained by means of computer simu-

WhekTe alr(:ng the Cha'? and recombine ‘;V'tlh othefr m'ce"%TIations. There are many levels of detail with which computer
making them a part of the more general class of reversiblgjy, jations can be performed. Molecular dynamics simula-

polglemers.t its indicate that besides I lik .tions in full atomic detai[8] require a large number of atoms
I ecent resufts in m;a € that besides blnear Wor{m € m'l'and a powerful computer. Many simulations therefore resort
celles, insomecases large rings may be present as welk, coarse-grained models in which a molecule is represented

[3-5. Rings are e_xpected theo_ret_ica[l@v] for high gnough by a small number of bead®,10]. These coarse-grained
values of the binding energysmssmn energyj. An_|mpor- _models usually focus on static properties ofgrt of 3

tant parameter, controlling the balance between linear Cha'nﬁngle wormlike micelle, such as the bending rigidity and
and rings, is the micellar concentration. For concentrationi,'astic modulus. In ordér to study the properties ofemn
where the wormlike mlcelles 5”,0”9'3/ qverlap, Imear Chf'°"n‘°’sembleof wormlike micelles, such as the aggregate size dis-
are egpected to dominate, erlg md dilute _SOIUt'OTS’b”ngStribution or the rheology, a much larger speedup is needed.
may become more Important. Indeed, experimental 0bservagq g rement of such properties will require simulations of
tions of shear thickening in wormlike micellar solutions nearvery large systems on very large time scales. This can only
the (apparent overlap concentratio,7] can be explained o “5chieved by representing entire wormlike micelles as

by assuming the presence of rings. In such systems, at Io\§‘|ngle chains of bead&t the cost, of course, of losing de-

shear rates the viscosity is barely_perturbed from its Z€M0qjled information about the amphiphilesThe results we
shear value. However, above a critical shear rate the visco

; : : Wil present here are obtained from simulations of a generic
ity suddenly jumps to a much higher value. Cates and Cang e of the latter kind. In this so-called FENE-C model

dag [3.] proposed a.scenar?o in which the_ interlinking and [11], the wormlike micelles are represented by flexible
delinking of large micellar rings controls this shear th'Cken'chains of relatively hard spheres. Chains can grow by the
addition of monomers at the chain ends, or by recombination
with other chain ends. Conversely, chains can break if any of
*Email address: jtp26@cam.ac.uk the bonds are stretched because of thermal fluctuations or
"Email address: boek@cambridge.oilfield.slb.com tension. The FENE-C model was studied extensively by
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Kroger and otherd11-14. Usually, in these studies ring SO 1 T 1 71
closure was explicitly disallowed. In this work, we will relax /
the no-loop constraint and discuss systems where linear /
chains have to compete with rings for the available mono- 40 / -

mers. Note that a similar approach has been taken by Kroger S~

. +  FENE polymer

in Ref. [13]. i / T
; FENE-C living

This paper is organized as follows. In Sec. Il we present
the simulation model. In Sec. Il we briefly present results
and theoretical predictions for the aggregate size distribution
of linear chains and rings undequilibrium conditions. The
main results of this paper are presented in Sec. IV, where we
study the influence aghear flowon the distribution functions i
and relative abundance of linear chains and rings. We sum- 0.6 0.8 1.0 1.2 1.4
marize the results in the form of a nonequilibrium diagram of r
states. Next, we present a hypothesis with which we are able
to explain the observed results. We study the ratio of ring and FIG. 1. Potentialu®™" between bonded particles. The energy
linear chain distribution functions to substantiate this hypothEsc réquired to break a bond is set by the cutoff radius for scission
esis. In Sec. V we study the rheology of this model. Finally,Rc: This plot shows the case for whicRc=1.13 and Es

polymer
4/

bond
U kT

in Sec. VI we discuss the results and describe how the olb5=8-09keT-
served increase of ring abundance can provide a positive
feedback between strain and ring connectivity. 1 . .
9 Y = ~k* Ry In[1 - (rj/Ry)?] for rj <Rc
UFENE-C_ 2
1) 1 ) !
Il. METHOD - ok* RS In[1 - (R/R)’] for rj > Re
We perform nonequilibrium molecular dynami¢¢EMD) (2

simulations of wormlike micelles in a good solvent under
simple shear flow. The solution is modelgtl] by N par-
ticles which interact via two-body potentials. A fractignof
these particlesthe “M particles’) is allowed to form worm-

like chains or rings, while the remaining fractiéh-¢) (the . lied by th # radi Fi A
“S particles’) acts as solvent. All particles have the same_’,oo),IS gontro ed by the cutoff ra u & (see Fig. 1
massm and the same excluded volume interactions repreSCiSsion is favored for a bond that is stretched because of

sented by the purely repulsive part of the Lennard-Johas thermal fluctuations, or beca_\use_ of forces due to_ shear flow
or entanglements. Recombination depends mainly on the

with parameterdR; (introducing anharmoniciy R- (cutoff
radius for scissiop and k* (spring constant The scission
energy is defined aBg=U°"{r* — o0) - U whereuPond
is the value of the potential at its minimum attf°"{r*

potential . ; .
fluctuations and(instantaneoysdensity of open ends. To
compare directly with results of previous simulations of this
UL model[11,12, we chooseR,=1.5 andk* =30. All systems
ij

containN=8400 particles, and simulations are performed at
. . 1 . constant temperaturé*=1 and particle densityn*=0.84,
_ 46[(&,-)_12— (r) %+ 4_1] for rjj <rq =20~ 1.12 using a conservative time step Af* =0.003. The particles
- . " undergo planar shear flow by application of Lees-Edwards
0 for rij > rey boundary conditiong15], where the temperature is con-
(1)  strained by a Gaussian thermodth#]. The micellar concen-
tration ¢ is varied between 0.04 and 1, and the cutoff radius
Rc is varied between 1.07 and 1.13, corresponding to sciss-

wherer} =r;/o is the dimensionless distance between pariOn energies=s; from 3.79 to 8.0%gT. The latter value, at
ticlesi andj. Here, and in the following, all quantities will ¢=1, corresponds to a chain length which is the upper limit
be given in dimensionless Lennard-Jones units of length, erfOr our system size chosen. All systems are equilibrated suf-
ergy, and masgo, €, andm). Other units are derived from ficiently long, Teq=*5>< 104, after which measurements are
this, e.g., unit of time isoVm/e and unit of viscosity is taken for anothell,,,=5X 10%,

Vme/ . All M particles are able to form transient bonds
with all other M patrticles, but every particle can have at
maximum two bonds at the same time. This condition en-
sures that no branched structures can occur. Supplementary
to previous work by Kréger and MakhloufiLl], we allow The equilibrium size distribution functions of self-

for closed loopgof minimum sizeL.=3) to be formed. Two assembled linear chains and rings have been studied exten-
bondedM particles interact vidJ*°"d=U"+UFENE-C where  sively by Wittmeret al. [17] by means of different Monte

the FENE-C potential is given by Carlo methods. Our molecular dynamics results are in good

IIl. LINEAR CHAINS AND CLOSED LOOPS
IN EQUILIBRIUM
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agreement with their findings. Therefore, in this section, we TABLE I. Equilibrium properties of théeg.=8.09kgT samples.

will focus on the theoretical predictions for the size distribu- ¢ is the fraction ofM particles, ¢; are the fractions contained in

tions. This will be useful when interpreting the nonequilib- rings (i=0) and linear chainsi =1), respectivelyg is the estimated

rium results in the next section. number of particles in a blolsee text, and(L;) are the average
Wittmer et al. [17] expressed the free energy of the sys-2ggregate numbers.

tem as a simple sum over the different aggregation sizes and

different species(i=0 for the rings andi=1 for linear ¢ g (L) $o (Lo) b1 (L
chaing. In units ofkgT, 0.04 196 40 0038 38 00024 7.5
1 = _ 008 79 59 0067 41 0013 14.9
Fleo(L),ca(L)]= 2 X c(L{Infe(L)b%]+ wL + fi(L, 4,E)}. 016 32 200 0081 45  0.079 35.7
I=0L=1 0.32 13 489 0.08 47 0235 64.9
3 1.00 3 1281 0092 56 0908 1405

The factorb enters for dimensional reasons and is of the
order of the effective bond length. The first term is the usual ) ) ) )
translational entropy. The second term represents a LagrangioP size. Heréoy, relates the radius of gyration of a chain to
multiplier, or chemical potentigk, which fixes the total mi- e number of monomer®y(L)=byL", where »=0.588 is
cellar concentrationh= ¢+ ¢;. All contributions to the free ~the self-avoiding walk exponent. The blob size depends on
energy, which are extensive or linear lip are absorbed in the concentration, and can be estimated by using the classical
definition for the crossover density of a monodisperse solu-

this Lagrangg mult|pl|er. The te_rm!’s, describe the free- tion [17,20: 4m/3¢&8n¢=g (ng is the monomer number den-
energy contributions not extensive In In general, these _. : N ~ 3 ;

: . ; . sjty). Using b,;=0.50 [21], and n=0.840"°, we estimate
may depend on the interactions between different chains an b)~2 9¢_1,§1 Estimated blob sizes for the concentra-
may therefore differ in the dilute, semidilute, and melt re- ' ' 8

gimes. The key assumption of the theory is that the distribu!'onsh sltudledthher?hargl gblve_nET Ti?]le fl' For Imea: chieuns
tion functions of linear chains and rings are only coupled vighuch larger than the blob size>g, the free energy levels

. L ' off to f;=—(y-1)In[g:(¢)], whereg;(¢)xg(¢). This leads
#. Functionally minimizing Eq(3), one finds to an exponential distribution for the linear chains
beo(L) = exf- fo(L,#) ~pLIH(L-Lo), (4@

bcy(L) = [0y(¢)]” Yexp(— E - uL) (semidilute,  (6)

b3y (L) = exd - fi(L,$) — uL — EJ, (4D \where u=1/(L,). For concentrated solutions and melts, the
Where~f0+1:fo(L,¢) and~f1+1:f1(L,¢)+E. The free en- Dlob description breaks down and the concentration depen-

ergy associated with the linear chains is split into an end—caﬁence bgecqme§ more cgmpllcated. However, the linear-chain

free energyE, which is of the order ofbut not necessarily ength distribution remains exponentfal7].

equal[17] to) the scission energl,. defined in our model,

and a remaining part that describes excluded volume corre- B. Closed loops

lations. The Heaviside functidr(x) enforces a smallest pos-  The sjze distribution of rings is very different from that of

sible ring sizeL, in effect a lower cutoff. In actual systems ine |inear chains, and much more singular. This can be un-

fchis cutoff may de_pend on factors, such as.the thqiled cheMyerstood from a simple argument due to Pqagl7]. The

istry of the amphiphiles, and on the bending rigidity of the (a4 of the linear chain and ring distribution functions must

micelle. be equal to the ratio of the respective partition functions,

which in turn must be proportional to the probability of

A. Linear chains opening a ring. The probability of opening a ring is propor-

tional to (i) the Boltzmann weight eXpE-f,) to break a

gingle bond,(ii) the number of places where the ring can

break,L, and(iii ) the vqumeRgl that two neighboring seg-

=—(y-1)In(L), where y~1.158 is the critical exponent for ments can explore after being disconnected. Hence, using

self-avoiding walkg19]. This leads to a Schultz-Zimm dis- E9S-(4).
tribution for the linear chains, _
exp(— ul)

b3c,(L) =L Texp(- E - uL) (dilute), (5) beo(L) = "OL[Rel(L,qs)b-l]s

where p=y/(Ly) [17]. This result is only valid for dilute \jth \, an unknown constant of proportionality. In the gen-
chains, i.e., chains which are too short to overlap. Above theralized case ob dimensional space, the volume that two
overlap concentration, a chain is an expanded coil until ifheighboring segments can explore is given R&:bDLDv_
interacts with other chains, after which the excluded volumerherefore, in equilibrium, we get the following result for the
interactions become screened. The unit of chain which igjistribution of rings:

swollen is called a bloly18,20. We defineg as the number

of monomers contained in one blob, a&dp)=by,9” is the Co(L) o exp(— L)LY PPH(L - Ly). (8)

Equations(4) become useful when expressions for the
free energy of linear chains and rings are inserted. For dilut
linear chains the free energy of a chain is given[b§] f;

H(L - Lo, )
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0 100 200 300 400 500
L

_ _FIG. 2. Equilibriu_m size_di_stribution _functio_ns under melt con- g5 3 Comparison of equilibrium and nonequilibrium size dis-
ditions (¢=1) at various scission energiés. Filled symbols are i tion functions for=1 andE.=8.09ksT. Circles are the equi-

the distribution functions of linear chains, open symbols are th§ipjym ength distributions of linear chainilled circles and rings
dlstrlbutl_on functions of_rlngs. Solid lines are theoretical predlctlons(Oloen circles Diamonds are the length distributions of linear
for the rings, Eq(8), usingD=3 andv=1/2. chains (filled diamond$ and rings(open diamondsunder shear
flow.

As a typical example, in Fig. 2 we show the equilibrium
size distribution under melt conditiongp=1) at various
scission energies. As expected, the length distribution of linlength is decreasing with shear rate for all shear rates and all
ear chains is essentially exponentisblid symbol and the ~ concentrations studied. At hlgh shear rates the_ chains in-
average linear lengttL,) increases rapidly with increasing creasingly align themselves with the shear flow in order to
scission energy and concentraticsee Table |, where we reduce tension. However, after this reduction, an additional
also report estimated blob sizgs The size distributions of ~tension(compared to equilibriupremains in the bonds, as-

rings are strongly singulaiopen symbolsand are well de- sociated with a larger momentum transfer. This leads to the
scribed by Eq.(8), with 1+Dv=2.5 and x=1/(L,) (bold observed decrease of the average length of linear chib#s

lines). Likewise in the dilute regime, both ring and linear Thg de_pendence of .th.e averagaeg size on shear rate is
chain distribution functions are in agreement with E€&. quite different. Surprisingly, for concentrations around and

; - _ _ higher than the overlap concentration the average ring size
=11 1PDv=2.7 =yl{L
and (8), using y 58, g 6, andu=y/{Ly) (not first decreases, but then displays an upturn at the higher shear

shown. rates(in this work we define the overlap concentratighas
the concentration where the average aggregation size is equal
IV. LINEAR CHAINS AND CLOSED LOOPS UNDER to the blob size(L)=g, which yields #* ~0.20 for E,

SHEAR FLOW =8.09kgT). Before trying to explain this upturn, we will

In this section we will study the influence shear flonon  study the relative amounts of rings and linear chains.
the distribution, average size, and abundance of linear chains
and rings.

A. Distribution and average size

>

-

In Fig. 3 we compare equilibriuniy=0) and shearedy

4’]%
=1) size distributions for¢=1 and E..=8.09ksT. Under L\?’::\.\é
shear flow, the probability of encountering a linear chain of a E, =8.09kT  linear

particular size decreases, relative to that probability in the 10° Hit—HHHiH Hit HH—

quiescent state, for all chain sizes except for very small or v\/ |

chains. Also, the average linear-chain size decreases with A 5L A\A_/A/A -

increasing shear rate, in agreement with previous observa- T',° 4

tions in simulations of wormlike micellegl1,12. Interest- 4 g‘:m N

ingly, the probability to encounter a ring of a particular size g | B =8.00KT ring i

is found toincreasefor a wide range of ring sizes, from the e T —

smallest rings allowedL.) up to relatively large rings of

order 100 monomer@vhich is much larger than the average

ring sizg. As a result the average ring size has increased. g, 4. Average aggregation size of linear chajtep figure
In Fig. 4 we take a more detailed look at how the averageyng rings(bottom figurg of the FENE-C model as a function of

size of rings({Ly)) and linear chain&(L,)) varies with shear gshear rate. The lines connect points of equal total concentration
rate and concentration. We find that the average linear-chaitlegend in Fig. 5.

<L

10

IIIIIm'I T TTIT

10° 10? 10" 10
shear rate y
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FIG. 5. Fraction of the total micellar mass contained in rings, FIG- 6. A nonequilibrium diagram of states for the FENE-C

#ol ¢ as a function of shear rate. The lines connect points of equalodel. Indicated are regimes wherequares linear chains are
total concentration. dominating at all shear rateggircley rings are dominating at all

shear rates, an(diamond$ linear chains are dominating at low

shear rates, but rings are dominating at high shear rates. The solid

line is the crossover from the ring-dominated to the linear-chain—

dominated regime in equilibrium. The crossover shifts to higher
In equilibrium, the abundance of rings in our model sys-concentrations with increasing shear redashed ling

tem depends on both the scission endegyand the concen- . .

tration ¢. Let us make clear from the onset that the relativeequally important. Indeed, at the concentratig=0.16,

amount of rings and linear chains is much influenced by th _g'gg I\fvedlfi)rfgﬁ iﬂroeszg%ﬁdb overlap concentraiih
. - . - — U, y 0 ~ U. .
smallL behavior of rings. Because most of the ring mass is However, it is not ruled out that shear flow may influence

concentrated in the smallest rings, our results generally dqhis balance. Indeed, Fig. 5 shows that the fraciigie is

pend on the chosen cutdft. Indeed, many real-life worm- - reasing with shear rate. Since the total micellar mass is
like ml_celles have a relatively high persistence length, COMegonserved, the shear flow induces a shift of mass from linear
sponding to a large value fdr.. However, we expect that & chains toward rings. This is true for all concentrations, but

change in_; will only shift the results, leaving the qualitative pecause rings are already dominating in the dilute systems,

picture unchanged. . . the effect is most clear for semidilute and concentrated sys-
In Fig. 5 we present the fractiopy/ ¢ of the total micellar  tems.

mass contained in rings as a function of shear rate for differ- More generally, we find that the abundance of rings in our
ent concentrations. In equilibrium, or at very low shear ratesmodel system depends on three parameters: the concentra-
going from low concentratiori¢< ¢*) to high concentra- tion ¢, the scission energi., and, as we have seen, the
tion (¢>¢*), we observe a crossover from a ring- shear ratey. In Fig. 6 we present our simulation results for
dominated system, via a system in which rings and lineathree scission energies and five concentrations in the form of
chains coexist, to a linear-chain-dominated system. This caa diagram of states. We distinguish between regimes where
be understood from a thermodynamic argument along th&ngs dominate and regimes where linear chains dominate.
lines of Eqgs.(4) [17], or from a rough kinetic argument. We define the crossover to the ring-dominated regime by the
Under dilute conditions the average distance between micekquality ¢o=¢,=¢/2. Configurations with ring dominance

lar chains and rings is large compared to the average size @fe denoted by circles, systems where linear chains dominate
a micellar chain or ring. Therefore, once a ring has opened, ity squares. The diamonds denote systems where linear
is not very likely that it is in the neighborhood of another chains dominate in quiescent conditions, but where rings
linear chain. In addition, in the dilute regime the averagedominate under rapid shear flow. The solid line is our esti-
chain and ring sizes are small, so the amoungagdditiona) =~ mate (by interpolation from the surrounding datéor the
volume that two newly created chain ends can explore aftecrossover to the ring-dominated regime in equilibrium and
being disconnected is relatively small. Therefore, if the scissthe dashed line is our estimate for the crossover to the ring-
ion energyE,. is large enough, most of the time the two dominated regime foiy=1. Our equilibrium result is quali-
newly created chain ends will recombine with one anothertatively similar to the one reported by Wittmet al. [17] .
promoting the presence of rings. On the other hand, in conThese authors have also studied systems of much higher
centrated solutions there is much overlap between lineascission energieswhich we were unable to do because of
chains and rings. Therefore, once a ring has opened, it is veiyur limited system size For systems containing both linear
likely that it will recombine with another linear chain. In chains and rings, they showed that both the crossover con-
addition, the average chain sizes are large, so two chain endsntration(as defined bypy,=¢,=¢/2) and the overlap con-
can explore a large volume. This promotes the presence afntrationg* (as defined byg(¢*)=(L)) reach a plateau at
linear chains. At the overlap concentration there is a balanchigh scission energies, the former lying slightly below the
between the above effects, and linear chains and rings atatter.

B. Abundance of closed loops: a nonequilibrium diagram
of states
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FIG. 7. Snapshots of ring configurations in equilibritop) 102 ¢
and under rapid shear flogg=0.1, bottom. 5 Escl=5l'8? I.(T...l .
1 10° 10 10°
Now, under shear flowdashed line in Fig. pwe find that L

the crossover shifts to much higher concentrations, well
within the overlap regime. Moreover, the shift is larger for
larger scission energies. In the next section we will try to
explain the observed effects of shear flow.

FIG. 8. Power-law behavior of the ratio of the length distribu-
tions for rings and linear chainsy/cy, vs the aggregation numbker

in the melt. In equilibrium, the slope conforms to a power-law
exponent —2.5, as expected for three-dimensigB8)) rings and
chains in the melt. Under shear flow, the slope conforms to a power-
law exponent —2.0 for the larger rings and chains, indicating two-
dimensional(2D) behavior(data vertically shiftefl The transition
point from 3D to 2D behavior decreases with increasing shear rate.

C. Hypothesis: shear-induced confinement of rings and chains
to two dimensions

We will put forward a possible reason for the increase of

the fraction of rings and the average size of rings under shear GolL) -y-Dy _
: ) *L H(L - Lo). 9

flow. Under rapid shear flow, the chains are stretched toward cy(L)
the flow direction, while contracting in the gradient direc- _ o _
tion. They maintain their equilibrium size, or contract only SO, by investigating the power-law behaviorafL)/c,(L),
slightly, in the vorticity direction. This is true for rings as We Will be able to discriminate betweeD=3 and D=2
well (see Fig. 7. Note that the entropy of a stretched linear ings. In the strong overlap and melt linfiy=1, »=1/2),
chain or ring is lower than that of the equivalent chain orwe expect the exponents to change from —+D53) to
ring in equilibrium[20]. More importantly, also the entropy —2.0(D=2). Under dilute conditiongy=1.158, »=0.588,
gain associated with opening a ring will decrease in goingve expect the exponents to change from —202 3) to
from a quiescent system to a sheared one. This may be ur-2.33(D=2).
derstood from the fact that the entropy gain is proportional to In Fig. 8 we investigate the melt limit. We plot the ratio
the logarithm of the ratio of the number of possible confor-for equilibrium conditions as well as two different shear
mations for a linear chain and a ring. In equilibrium, the tworates. The equilibrium data confirm the expected slope of
chain ends explore a three-dimensional volume. Under rapid2.5 for D=3. In the two nonequilibrium results we recog-
shear, however, we hypothesize that the two chain ends exize a transition from a slope of -2.5 for small rings and
plore an essentially two-dimensional volume. The decreasechains to a slope close to —2(D=2) for larger rings and
entropy gain will shift the balance in favor of ring formation. chains. The aggregate sitg where the transition occurs,

Whether or not a chain will explore an essentially two- decreases frorh,~40 aty=0.1 toL,~15 aty=1. The de-
dimensional volume will depend on its size and on the sheagrease with shear rate is in agreement with our expectations.
rate. In general, shear flow will start to affect the conforma- Next, we investigate the dilute limit. In this limit, the
tional properties of a chain of size when the shear rate fraction of mass in linear chains is very low. Unfortunately,
becomes larger than the inverse largest relaxation timgecause the linear—chain distribution occurs in the denomi-
(L) Of that chain. Because wormlike micellar systems arenator of the ratiocy/c;, the noise also becomes relatively
very polydisperse, and because larger rings and chains gefarge in the dilute limit. In Fig. 9 we plot the ratio for equi-
erally have larger relaxation times, and vice versa, we expedibrium conditions and two different shear rates, and all of
that under shear flow there will always be a mixture of threethem for three different concentratiols Note that overlap
dimensional and two-dimensional rings and chains. In facteffects become apparent only when chains are much larger
the two-dimensional behavior starts only for those aggrethan the blob sizey. Therefore the largest concentratign
gates for whichr,(L) is much larger than the inverse shear=0.16 can still be used to investigate the dilute scaling be-
rate in order for strong contractions in the gradient directiorhavior of the ratiocy/c,, at least up td_~100. Indeed, the
to occur. equilibrium data confirm the expected slope of —2.92 Bor

To test the above hypothesis, we calculate the ratio of ring=3 for all concentrations up to and includirf=0.16. The
and linear-chain distributions against the aggregation numbetata of all concentrations coincide because the free-energy
L. According to Eqs(4) and(8), usingf;=—(y-1)In(L), we  difference between rings and linear chains is independent of
expect concentration in the dilute limit. If we now apply shear, we
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FIG. 9. Power-law behavior of the ratio of the length distribu-  FIG. 10. Total shear viscosityy of the FENE-C model as a
tions for rings and linear chainsy/cy, vs the aggregation number  function of shear rat¢éopen symbols The shear viscosity of the
for three different dilute concentrations. In equilibrium, the slopepure solveni ¢=0, closed circlesis also given.
conforms to a power-law exponent —2.92, as expected for dilute 3D

rings and chains. Under shear flow, the slope conforms to a power- . . : . . .
law exponent —2.33 for the larger rings and chains, indicating 2Dgomg planar shear flow in tie direction, with the gradient

behavior(data vertically shiftefl The transition point from 3D to In they dlrectlton% fr?n bte ddeterrplpedhfrom tthe time-averaged
2D behavior decreases with increasing shear rate. Xy component ot the steady-state shear stress,

recognize a transition to a slope close to —2(B3-2) for the n= <‘T_x ) . (11)
larger rings and chains, again consistent with our hypothesis. 04

These obseryatlons confirm our hypothesis that ghear flow In Fig. 10 we plot the measured shear viscosity versus
causes a fraction of the system to behave like two-

shear rate foE,.=8.09kgT at five different concentrations.

dimensional rings and chains. Th|_s Causes rngs to becom[ahe system displays shear thinning behavior at all concen-
more abundant and the average ring size to increase at hqu}j1

enouah shear rates. Moreover. at a aiven shear yaiad tions. The shear thinning reaches a slope of t@aghed
9 . ' . 9 ¥ line) for the highest concentratioth=1. At low shear rates,
concentratione, the effect will become larger for systems

with higher scission energids,, because such systems havethe viscosity levels off to a constant value, which is the zero-
9 . 9183 b | Systems shear viscosity. Within the range of shear rates studied, this
larger average ring and chain sizes already in equilibrium.

The observed effects of shear may enhance the she lateau is reached for all concentrations but the highest. In

thickening observed in real-life micellar systems with high ig. 10 we have also plotted the shear viscosity of the pure

o X . olvent(¢=0, dotted ling. We confirm that at low concen-
enough scission energy and concentrations around or sllght¥

) : ations(or all concentrations at high enough shear ¢te
bglow the overlap concentrat|(§8_,4]. In the next section we viscosity approaches that of the solvent.
will therefore pay some attention to the rheology of our

model system. We will return to real-life micellar systems in The observed shear thinning behavior is reminiscent of
the Disc{Jssioﬁ y experimental observations in wormlike micelles. However,

in experiments the shear thinning of the viscosity is much
stronger, with a slope as low as -1 for strongly overlapping
wormlike micelles. This now exposes an important differ-
ence between experimental wormlike micelles and the cur-
In many applications, wormlike micelles are used as rherent FENE-C model. In experimental semidilute and concen-
ology control agents. As a consequence, much of the charatrated systems, the shear stress in equilibrium is dominated
terization of wormlike micellar solutions is done by means ofby contributions from the temporary networkr matrix
rheometry. In a molecular dynamics simulation, the rheologyformed by the micelles. In other words, the solvemually
can be determined by measuring the instantaneous stress tawaten does not contribute significantly to the zero-shear vis-
sor. Its components are given pg0] cosity. Under rapid shear flow, the network becomes strongly
N Nl N aligned, resulting in excessive shear thinning until the vis-
1 cosity of the solvent is reached. On the other hand, in the
‘\—/<§1 Moivip+ > 2, rijaFijB>- (10)

V. RHEOLOGY

Oap= FENE-C model, excluded volume interactions between sol-
vent spheres are often dominating the network contribution
Herev;, is thea component of the velocity of particier;;,  to the shear stress. This is caused by the fact that, unlike real
the a component of the vector from the position of partigle solvents, the solvent particles in the FENE-C model are of
to particlei, andFj; 5 the g component of the force exerted the same size and rigidity as the micelle forming particles.
by particlej on particlei (we have assumed a pairwise in- This results in a relatively high solvent contribution to the

teracting system The shear viscosity; of a system under- shear viscosity.

i=1 j=i+1
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tions and melts. The crossover concentration between the
two regimes is close to the overlap concentration.

We have found that, as a result of shear flow, the cross-
over between ring and linear-chain-dominated regimes in-
creases to higher concentratiofsg. 6). In other words, at
fixed micellar concentration the shear flow induces a net shift
of micellar mass from linear chains to rings. At the same
time, the average aggregation size of linear chains is decreas-

ing with increasing shear rate, while the average aggregation
B—xﬂ size of rings is first decreasing but then increasing. We have
E:=8.09 KT \ put forward the hypothesis that this increase of ring abun-

T R T R dance and size is caused by a decrease of entropy gain asso-
10° 102 10" 10° qlated with ring opening under shear flow. The conforma—
shear rate tions of large chains and rings, whose typical relaxa}t|on
times are much larger than the inverse shear rate, will be
FIG. 11. Viscosity7”°" based on the stress through the bondsaltered significantly by the shear flow. They will be elon-
between micellar monomers. gated in the flow direction, and, as a result of their finite
extensibility, contracted in the gradient direction. This leaves
I . an essentially two-dimensional free volume which two newly
Steeper shear thmnmg slopes may_bg observed in th(?reated chain ends can explore after being disconnected. We
FENE-C model when using higher scission energi&s  |cgjize that we have appliedequilibrium) statistical-
However, because the solvent contribution will always beyechanical arguments to nonequilibrium conditions. The
unrealistically high, we expect th&k. must become unreal- |4tive motion of rings and chains within each layer perpen-
istically high as well. , dicular to the gradient direction is slow, however, and quasi-
Let us now, for an instance, ignore the excluded volume.iaiic arguments may apply. Indeed, we have been able to
contributions to the shear stress. In Fig. 11 we have plotted,,yctantiate the hypothesis by studying the power-law be-
the viscosity7*°™, defined similar to Eq(11) but with the  1Jvior of the raticco(L)/c,(L), which, according to Eq9) is
énsitive to the dimensionalit® of the free volume. Our
Fesults are consistent with=2 for large rings and chains,
although a fractal dimension cannot be excluded; a joint
?east-squares fit with the high-data in Figs. 8 and 9 yields
D=2.1+£0.3.

bond
3,
T T T TTIm T T T T 10T

only. Much stronger shear thinning is observed now, with
slope close to —1dashed lingfor the highest concentration
¢=1, in apparent agreement with experimental observation
Note that the viscosity results for the FENE-C modeX-

cluding fing fom?at_'o"' prese_nted _by Cardz_t al. [12] were . On the rheological side, we have found that the viscosity
calgulated in a similar way, €., d|sregard!n_g solvent contrig decreasing with shear rate. The shear thinning exponent,
butions, although the authors did not e_pr|C|tIy state this. Ashowever, is less pronounced0.4) than expected from simi-
whe haYﬁ seen, \;the,? Zolvent contnrt])lftmnsd are Tcluded, th%r experimental wormlike micelles-1). The failure of the
shearthinning €efiects become much less dramatic. model to predict the correct shear thinning behavior is attrib-
uted to the dominance of solvent excluded volume effects in
V1. DISCUSSION AND CONCLUSIONS the FENE-Q model. We expect to observe the correct slope
of —1 within the FENE-C model only when much larger
We have studied the influence of shear flow on the formavalues of the scission enerdy. are used. In that case the
tion of rings in wormlike micelles by means of nonequilib- chains will be much longer, the zero-shear viscosity much
rium molecular dynamics simulations of the FENE-C modelhigher, and the critical shear ratehere shear thinning be-
[11]. As we have already made clear, the results presentegins) much lower, leaving more “room” for shear thinning.
here depend on the smallest ring size allowed, which in re- In experiments, wormlike micellar systems are not only
ality would be determined by such factors as the chemistrpbserved to shear thin, but sometimes alsstear thicken
of the amphiphiles and the bending rigidity of the wormlike [4]. Although this phenomenon was not observed in our
micelles. It has been argued in the literature that rings shortesimulations, we believe we have found a mechanism by
than roughly a persistence length are highly unlikely to formwhich shear thickening can be explained.
[1]. This might be the reason why rings seem to be unimpor- Shear thickening systems are usually just below the over-
tant in some giant micellar systems. On the other handiap concentration and typically show a factor of 10 increase
closed loops have been observed at least their presence in viscosity around some critical shear ratg while below
suggestepin other giant micellar system$8-5] as well as v, the viscosity is barely perturbed from its zero-shear value
other types of equilibrium polymers, such as liquid sulfur 7, As already mentioned in the Introduction, Cates and Can-
[6]. For such systems, the results we have found will bedau [3] have put forward a speculative scenario in which
relevant, at least in a qualitative way. large interlinked ringsare driving this shear thickening be-
For the equilibrium case, i.e., in the absence of shear flonhavior. If the linking and delinking kinetics is sufficiently
we have confirmed the findings of Wittmet al. [17]: rings  slow, a percolating network of interlinked rings will indeed
are dominating in dilute solutions, while linear chains arebe able to transfer much more stress. Their scenario may also
dominating in strongly overlapping and concentrated soluexplain why shear thickening is only observed near the over-
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quiescent sheared This leads us to believe that, in experimental systems, con-
) o finement effects become important at much lower shear rates
Qb Q Q% = than the ones studied here.
0 gt = In our simulations shear thickening was not observed. The
QQ\(Q &SN = root of the problem lies in the fast scission and recombina-
¢ << ¢* tion kinetics(and thus linking and delinking kinetig®f the

FENE-C model. Recombination is relatively easy in this
QZEQ) —— model, because chain ends can fuse instantly if their separa-
Q(_) % tion is smaller tharRc (Fig. 1). In rgglity, before two chain
()O S~ ends can fuse, there may be specific demands on the confor-

o~ ¢* mations of the amphiphiles in the end caps, giving rise to a
---------------------------------- free-energy barrier. Chain recombination, like scission, may

therefore be an activated process. A typical value for the
height E, of the free-energy barrier may be estimated from
experiments on EHAC wormlike micellg22,23, yielding

E,~12.5kgT. Such a high activation barrier will substan-
tially decrease the rate with which wormlike micelles are
breaking up. As a consequence, the linking and delinking
kinetics of rings inreal wormlike micelles can be very slow,
opening up the route to shear thickening behavior.

FIG. 12. Cartoon of wormlike micellar configurations in quies-
cent and sheared conditions. Rpt< ¢* (top figure many rings are

M -
present, but they do not overlap. Fge- ¢* (bottom figurg h?rdly We can finally conclude that the FENE-C model has
any rings are present. Only near the overlap concentratioddle

figure) enough rings may be present which can interlink, increas-tatht_ us a lot a_bout the eqU|I|br|L_|m and noneqU|I_|b_r|um

: behavior of flexible wormlike micelles. The original

ingly so, under shear flow. . .

FENE-C model can still be motivated by the fact that the

lap concentration. Far below the overlap concentration th equilibriumdistributions should be unaffected by any recom-
P ' P ination activation barrier. However, great care must be

aggregates, although mainly in the form of rings, do nOttaken if realistic and quantitative results for ghgnamicsand
overlap or interlink. On the other hand, far above the overla|orheologyof wormlike micelles are required. Currently, we

;Cr)g ggt':;a;?en rtrtfi;ﬁyairﬁ tr;]aer?grzngfr;&gez:ocknéfggnvﬁﬂt?ﬁ Z?éare developing a model in which a significant recombination
entangled with each other. Only ear slightly below the activation barrier will be incorporated, and where the solvent

overlap concentration is there a balance between rinas a contribution to the stress tensor will be negligilblBrownian
; p cc ) ng rﬁ@namics. Another step towards realism concerns the persis-
linear chains(See Fig. 12 or a cartoon of the three different

. . . ence length. Usually the persistence length of a wormlike
concentration regimes under quiescent and sheared concﬁh g Y P 9

. X . licelle is much larger than its diametg8]. This may be
t!ons.) Cates gnd Candau de;crlbgd the p033|p|llty of a Palhodeled by means of a bending potential between the
tially percolating structure of interlinked rings in the quies-

; . spherical beads, as in Ref13]. Unfortunately, this quickly
cent state, which becomes fully percolating as a result o ecomes very CPU-intensive, as many beads will be required
shear flow. In order to explain the shear thickening eﬁec& |

fullv. thev needed a positive feedback between stress 0 represent just one persistence length of a realistic worm-
Y, y neeced a p > Qlke micelle. We will therefore represent wormlike micelles
strain and ring linking. Our work suggests that one possibl

positive feedback mechanism is provided by the shearq-)y long and thin segments, each segment measuring an entire

induced confinement of linear chains and rings t low 'persistence length. We will deal with the uncrossability of
iduced confinement of finear chains a gs 10 a Iowely,,qpy segments by means of the TWENTANGLEMENT
dimensional space, leading to larger and more abundant NG ~thod. details of which can be found in REA)

aggregates. It should be noted that in this work the confine-
ment effects become apparent only at relatively high shear
rates. Experimental micellar systems usually have much
higher scission energies and therefore much larger chains We thank John Crawshaw for careful reading of the

and rings than the ones studied here. Consequently, relagaanuscript. J.T.P. is financially supported by a grant from the
ation times are much larger and critical shear rates for nond.K. Engineering and Physical Sciences Research Council
linear behavior are much lower. Moreover, thegest(rather  (EPSRQ through the IMPACT Faraday Partnership Pro-

than the averagerings will form the percolating network. gramme.

ACKNOWLEDGMENTS

[1] Micelles, Membranes, Microemulsions, and Monolay&d- 6869(1990.
ited by W. M. Gelbart, A. Ben-Shaul, and D. Ro(&pringer- [3] M. E. Cates and S. J. Candau, Europhys. L&%.887(2001).
Verlag, New York, 1994 [4] CI. Oelschlaeger, G. Waton, E. Buhler, S. J. Candau, and M. E.
[2] M. E. Cates and S. J. Candau, J. Phys.: Condens. Mafter Cates, Langmuirl8, 3076(2002.

031502-9



J. T. PADDING AND E. S. BOEK PHYSICAL REVIEW E70, 031502(2004

[5] T. M. Clausen, P. K. Vinson, J. R. Minter, H. T. Davis, Y. [15] M. P. Allen and D. J. TildesleyComputer Simulation of Lig-

Talmon, and W. G. Miller, J. Phys. Cherfi6, 474(1992; M. uids (Clarendon, Oxford, 1987

In, O. Aguerre-Chariol, and R. Zan#id. 103 7747(1999;  [16] F. Zhang, D. J. Searles, D. J. Evans, J. S. den Toom Hansen,

A. Bernheim-Groswasser, R. Zana, and Y. Talmibig. 104, and D. J. Isbister, J. Chem. Phykl1, 18 (1999.

4005(2000. [17] J. P. Wittmer, P. van der Schoot, A. Milchev, and J. L. Barrat,
[6] R. G. Petschek, P. Pfeuty, and J. C. Wheeler, Phys. R&84,A

J. Chem. Phys113 6992(2000.

[7] H. Rehage, I. Wunderlich, and H. Hoffmann, Prog. Colloid [18] P. G. de GennesScaling Concepts in Polymer PhysidSor-
Polym. Sci '72 11.(199% ' ' nell University, Ithaca, New York, 1939

[8] E. S. Boek, W. K. den Otter, W. J. Briels, and D. lakovlev, [19] S. Caracciolo, M. S. Causo, and A. Pelissetto, Phys. Rev. E
Philos. Trans. R. Soc. London, Ser. 262, 1625(2004). 57, R1215(1998. .

[9] R. Goetz and R. Lipowsky, J. Chem. Phyk0§, 7397(1998. [20] M. Doi and S. F. EdwardsThe Theory of Polymer Dynamics

[10] W. K. den Otter, S. A. Shkulipa, and W. J. Briels, J. Chem.  (Clarendon, Oxford, 1986

2391(1986.

Phys. 119, 2363(2003. [21] K. Kremer and G. S. Grest, J. Chem. Phg2, 5057(1990.
[11] M. Kroger and R. Makhloufi, Phys. Rev. B3, 2531(1996. [22] I. Couillet, T. Hughes, G. Maitland, F. Candau, and S. J. Can-
[12] W. Carl, R. Makhloufi, and M. Kroger, J. Phys. [T, 931 dau (unpublishegl

(1997). [23] J. T. Padding and E. S. Boek, Europhys. L&®, 756 (2004).
[13] M. Kroger, Macromol. Symp133 101(1998. [24] J. T. Padding and W. J. Briels, J. Chem. Phyd5 2846
[14] M. Kroger, Phys. Rep390, 453 (2004). (2001).

031502-10



