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We study the influence of shear flow on the formation of rings in a generic reversible polymer(FENE-C)
model, representative for wormlike micelles. Under equilibrium conditions, rings are dominating in dilute
solutions, while linear chains are dominating in strongly overlapping and concentrated solutions. We find that
shear flow induces a net shift of micellar mass from linear chains to rings. At the same time, the average
aggregation size of linear chains is decreasing, while the average aggregation size of rings is increasing. We
hypothesize that the increased abundance and size of rings are caused by a decreased entropy gain associated
with ring opening under shear flow. Linear chains and rings are elongated in the flow direction and contracted
in the gradient direction. This leaves an essentially two-dimensional free volume, which two newly created
chain ends can explore after being disconnected. We study the ratio of ring and linear chain distribution
functions to substantiate this hypothesis. Finally, we study the rheology and discuss how the observed increase
of ring abundance can provide a positive feedback between strain and ring connectivity. Such a positive
feedback can contribute to shear thickening behavior, observed in micellar solutions near the overlap
concentration.
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I. INTRODUCTION

Surfactant molecules in solution are known to spontane-
ously assemble into complex structures[1]. Among these are
elongated cylindrical assemblies of such great length as to be
flexible and coil-like. The equilibrium statistics and dynam-
ics of these so-called wormlike micelles resemble those of a
polymer solution[2]. However, contrary to classical poly-
mers for which the size distribution is fixed at the time of
synthesis, a micellar chain can break spontaneously any-
where along the chain and recombine with other micelles,
making them a part of the more general class of reversible
polymers.

Recent results indicate that besides linear wormlike mi-
celles, in somecases large rings may be present as well
[3–5]. Rings are expected theoretically[6] for high enough
values of the binding energy(“scission energy”). An impor-
tant parameter, controlling the balance between linear chains
and rings, is the micellar concentration. For concentrations
where the wormlike micelles strongly overlap, linear chains
are expected to dominate, while in dilute solutions, rings
may become more important. Indeed, experimental observa-
tions of shear thickening in wormlike micellar solutions near
the (apparent) overlap concentration[4,7] can be explained
by assuming the presence of rings. In such systems, at low
shear rates the viscosity is barely perturbed from its zero-
shear value. However, above a critical shear rate the viscos-
ity suddenly jumps to a much higher value. Cates and Can-
dau [3] proposed a scenario in which the interlinking and
delinking of large micellar rings controls this shear thicken-

ing process. Their scenario required a positive feedback be-
tween stress or strain and ring interlinking. It remained un-
clear, however, what the precise mechanism of the feedback
would be.

The aim of this paper is to investigate the influence of
shear flow on ring formation in a micellar solution. We will
show that the shear flow induces an increase in the size and
abundance of micellar rings, thus providing one possible
positive feedback mechanism.

Our results will be obtained by means of computer simu-
lations. There are many levels of detail with which computer
simulations can be performed. Molecular dynamics simula-
tions in full atomic detail[8] require a large number of atoms
and a powerful computer. Many simulations therefore resort
to coarse-grained models in which a molecule is represented
by a small number of beads[9,10]. These coarse-grained
models usually focus on static properties of a(part of a)
single wormlike micelle, such as the bending rigidity and
elastic modulus. In order to study the properties of anen-
sembleof wormlike micelles, such as the aggregate size dis-
tribution or the rheology, a much larger speedup is needed.
Measurement of such properties will require simulations of
very large systems on very large time scales. This can only
be achieved by representing entire wormlike micelles as
single chains of beads(at the cost, of course, of losing de-
tailed information about the amphiphiles). The results we
will present here are obtained from simulations of a generic
model of the latter kind. In this so-called FENE-C model
[11], the wormlike micelles are represented by flexible
chains of relatively hard spheres. Chains can grow by the
addition of monomers at the chain ends, or by recombination
with other chain ends. Conversely, chains can break if any of
the bonds are stretched because of thermal fluctuations or
tension. The FENE-C model was studied extensively by
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Kröger and others[11–14]. Usually, in these studies ring
closure was explicitly disallowed. In this work, we will relax
the no-loop constraint and discuss systems where linear
chains have to compete with rings for the available mono-
mers. Note that a similar approach has been taken by Kröger
in Ref. [13].

This paper is organized as follows. In Sec. II we present
the simulation model. In Sec. III we briefly present results
and theoretical predictions for the aggregate size distribution
of linear chains and rings underequilibrium conditions. The
main results of this paper are presented in Sec. IV, where we
study the influence ofshear flowon the distribution functions
and relative abundance of linear chains and rings. We sum-
marize the results in the form of a nonequilibrium diagram of
states. Next, we present a hypothesis with which we are able
to explain the observed results. We study the ratio of ring and
linear chain distribution functions to substantiate this hypoth-
esis. In Sec. V we study the rheology of this model. Finally,
in Sec. VI we discuss the results and describe how the ob-
served increase of ring abundance can provide a positive
feedback between strain and ring connectivity.

II. METHOD

We perform nonequilibrium molecular dynamics(NEMD)
simulations of wormlike micelles in a good solvent under
simple shear flow. The solution is modeled[11] by N par-
ticles which interact via two-body potentials. A fractionf of
these particles(the “M particles”) is allowed to form worm-
like chains or rings, while the remaining fractions1−fd (the
“S particles”) acts as solvent. All particles have the same
massm and the same excluded volume interactions repre-
sented by the purely repulsive part of the Lennard-Jones(LJ)
potential

Uij
LJ

= 54eFsr ij
* d−12− sr ij

* d−6 +
1

4
G for r ij

* ø rcut = 21/6 < 1.12

0 for r ij
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6,
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where r ij
* =r ij /s is the dimensionless distance between par-

ticles i and j . Here, and in the following, all quantities will
be given in dimensionless Lennard-Jones units of length, en-
ergy, and mass(s, e, andm). Other units are derived from
this, e.g., unit of time issÎm/e and unit of viscosity is
Îme /s2. All M particles are able to form transient bonds
with all otherM particles, but everyM particle can have at
maximum two bonds at the same time. This condition en-
sures that no branched structures can occur. Supplementary
to previous work by Kröger and Makhloufi[11], we allow
for closed loops(of minimum sizeLc=3) to be formed. Two
bondedM particles interact viaUbond=ULJ+UFENE−C, where
the FENE-C potential is given by
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with parametersR0 (introducing anharmonicity), RC (cutoff
radius for scission), and k* (spring constant). The scission
energy is defined asEsc=Ubondsr * →`d−Umin

bond, whereUmin
bond

is the value of the potential at its minimum andUbondsr *
→`d is controlled by the cutoff radiusRC (see Fig. 1). A
scission is favored for a bond that is stretched because of
thermal fluctuations, or because of forces due to shear flow
or entanglements. Recombination depends mainly on the
fluctuations and(instantaneous) density of open ends. To
compare directly with results of previous simulations of this
model [11,12], we chooseR0=1.5 andk* =30. All systems
containN=8400 particles, and simulations are performed at
constant temperatureT* =1 and particle densityn* =0.84,
using a conservative time step ofDt* =0.003. The particles
undergo planar shear flow by application of Lees-Edwards
boundary conditions[15], where the temperature is con-
strained by a Gaussian thermostat[16]. The micellar concen-
tration f is varied between 0.04 and 1, and the cutoff radius
RC is varied between 1.07 and 1.13, corresponding to sciss-
ion energiesEsc from 3.79 to 8.09kBT. The latter value, at
f=1, corresponds to a chain length which is the upper limit
for our system size chosen. All systems are equilibrated suf-
ficiently long, Teq

* =53104, after which measurements are
taken for anotherTrun

* =53104.

III. LINEAR CHAINS AND CLOSED LOOPS
IN EQUILIBRIUM

The equilibrium size distribution functions of self-
assembled linear chains and rings have been studied exten-
sively by Wittmeret al. [17] by means of different Monte
Carlo methods. Our molecular dynamics results are in good

FIG. 1. PotentialUbond between bonded particles. The energy
Esc required to break a bond is set by the cutoff radius for scission
RC. This plot shows the case for whichRC=1.13 and Esc

=8.09kBT.
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agreement with their findings. Therefore, in this section, we
will focus on the theoretical predictions for the size distribu-
tions. This will be useful when interpreting the nonequilib-
rium results in the next section.

Wittmer et al. [17] expressed the free energy of the sys-
tem as a simple sum over the different aggregation sizes and
different species(i =0 for the rings andi =1 for linear
chains). In units ofkBT,

Ffc0sLd,c1sLdg = o
i=0

1

o
L=1

`

cisLdhlnfcisLdb3g + mL + f̃ isL,f,Edj.

s3d

The factorb enters for dimensional reasons and is of the
order of the effective bond length. The first term is the usual
translational entropy. The second term represents a Lagrange
multiplier, or chemical potentialm, which fixes the total mi-
cellar concentrationf=f0+f1. All contributions to the free
energy, which are extensive or linear inL, are absorbed in

this Lagrange multiplier. The termsf̃ i describe the free-
energy contributions not extensive inL. In general, these
may depend on the interactions between different chains and
may therefore differ in the dilute, semidilute, and melt re-
gimes. The key assumption of the theory is that the distribu-
tion functions of linear chains and rings are only coupled via
m. Functionally minimizing Eq.(3), one finds

b3c0sLd = expf− f0sL,fd − mLgHsL − Lcd, s4ad

b3c1sLd = expf− f1sL,fd − mL − Eg, s4bd

where f̃0+1=f0sL ,fd and f̃1+1=f1sL ,fd+E. The free en-
ergy associated with the linear chains is split into an end-cap
free energyE, which is of the order of(but not necessarily
equal[17] to) the scission energyEsc defined in our model,
and a remaining part that describes excluded volume corre-
lations. The Heaviside functionHsxd enforces a smallest pos-
sible ring sizeLc, in effect a lower cutoff. In actual systems
this cutoff may depend on factors, such as the detailed chem-
istry of the amphiphiles, and on the bending rigidity of the
micelle.

A. Linear chains

Equations(4) become useful when expressions for the
free energy of linear chains and rings are inserted. For dilute
linear chains the free energy of a chain is given by[18] f1
=−sg−1dlnsLd, whereg<1.158 is the critical exponent for
self-avoiding walks[19]. This leads to a Schultz-Zimm dis-
tribution for the linear chains,

b3c1sLd = Lg−1 exps− E − mLd sdiluted, s5d

where m=g / kL1l [17]. This result is only valid for dilute
chains, i.e., chains which are too short to overlap. Above the
overlap concentration, a chain is an expanded coil until it
interacts with other chains, after which the excluded volume
interactions become screened. The unit of chain which is
swollen is called a blob[18,20]. We defineg as the number
of monomers contained in one blob, andjsfd=bg1g

n is the

blob size. Herebg1 relates the radius of gyration of a chain to
the number of monomers,RgsLd=bg1L

n, wheren=0.588 is
the self-avoiding walk exponent. The blob size depends on
the concentration, and can be estimated by using the classical
definition for the crossover density of a monodisperse solu-
tion [17,20]: 4p /3j3nf=g (nf is the monomer number den-
sity). Using bg1<0.5s [21], and n=0.84s−3, we estimate
gsfd<2.9f−1.31. Estimated blob sizesg for the concentra-
tions studied here are given in Table I. For linear chains
much larger than the blob size,L@g, the free energy levels
off to f1=−sg−1dlnfg1sfdg, whereg1sfd~gsfd. This leads
to an exponential distribution for the linear chains

b3c1sLd = fg1sfdgg−1exps− E − mLd ssemidiluted, s6d

wherem=1/kL1l. For concentrated solutions and melts, the
blob description breaks down and the concentration depen-
dence becomes more complicated. However, the linear-chain
length distribution remains exponential[17].

B. Closed loops

The size distribution of rings is very different from that of
the linear chains, and much more singular. This can be un-
derstood from a simple argument due to Porte[1,17]. The
ratio of the linear chain and ring distribution functions must
be equal to the ratio of the respective partition functions,
which in turn must be proportional to the probability of
opening a ring. The probability of opening a ring is propor-
tional to (i) the Boltzmann weight exps−E− f1d to break a
single bond,(ii ) the number of places where the ring can
break,L, and(iii ) the volumeRe1

3 that two neighboring seg-
ments can explore after being disconnected. Hence, using
Eqs.(4),

b3c0sLd = l0
exps− mLd

LfRe1sL,fdb−1g3HsL − Lcd, s7d

with l0 an unknown constant of proportionality. In the gen-
eralized case ofD dimensional space, the volume that two
neighboring segments can explore is given byRe1

D =bDLDn.
Therefore, in equilibrium, we get the following result for the
distribution of rings:

c0sLd ~ exps− mLdL−1−DnHsL − Lcd. s8d

TABLE I. Equilibrium properties of theEsc=8.09kBT samples.
f is the fraction ofM particles,fi are the fractions contained in
rings si =0d and linear chainssi =1d, respectively,g is the estimated
number of particles in a blob(see text), and kLil are the average
aggregate numbers.

f g kLl f0 kL0l f1 kL1l

0.04 196 4.0 0.038 3.8 0.0024 7.5

0.08 79 5.9 0.067 4.1 0.013 14.9

0.16 32 20.0 0.081 4.5 0.079 35.7

0.32 13 48.9 0.085 4.7 0.235 64.9

1.00 3 128.1 0.092 5.6 0.908 140.5
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As a typical example, in Fig. 2 we show the equilibrium
size distribution under melt conditionssf=1d at various
scission energies. As expected, the length distribution of lin-
ear chains is essentially exponential(solid symbols) and the
average linear lengthkL1l increases rapidly with increasing
scission energy and concentration(see Table I, where we
also report estimated blob sizesg). The size distributions of
rings are strongly singular(open symbols) and are well de-
scribed by Eq.(8), with 1+Dn=2.5 andm=1/kL1l (bold
lines). Likewise in the dilute regime, both ring and linear
chain distribution functions are in agreement with Eqs.(5)
and (8), using g=1.158, 1+Dn=2.76, andm=g / kL1l (not
shown).

IV. LINEAR CHAINS AND CLOSED LOOPS UNDER
SHEAR FLOW

In this section we will study the influence ofshear flowon
the distribution, average size, and abundance of linear chains
and rings.

A. Distribution and average size

In Fig. 3 we compare equilibriumsġ=0d and shearedsġ
=1d size distributions forf=1 and Esc=8.09kBT. Under
shear flow, the probability of encountering a linear chain of a
particular size decreases, relative to that probability in the
quiescent state, for all chain sizes except for very small
chains. Also, the average linear-chain size decreases with
increasing shear rate, in agreement with previous observa-
tions in simulations of wormlike micelles[11,12]. Interest-
ingly, the probability to encounter a ring of a particular size
is found toincreasefor a wide range of ring sizes, from the
smallest rings allowedsLcd up to relatively large rings of
order 100 monomers(which is much larger than the average
ring size). As a result the average ring size has increased.

In Fig. 4 we take a more detailed look at how the average
size of ringsskL0ld and linear chainsskL1ld varies with shear
rate and concentration. We find that the average linear-chain

length is decreasing with shear rate for all shear rates and all
concentrations studied. At high shear rates the chains in-
creasingly align themselves with the shear flow in order to
reduce tension. However, after this reduction, an additional
tension(compared to equilibrium) remains in the bonds, as-
sociated with a larger momentum transfer. This leads to the
observed decrease of the average length of linear chains[12].
The dependence of the averagering size on shear rate is
quite different. Surprisingly, for concentrations around and
higher than the overlap concentration the average ring size
first decreases, but then displays an upturn at the higher shear
rates(in this work we define the overlap concentrationf* as
the concentration where the average aggregation size is equal
to the blob size,kLl=g, which yields f* <0.20 for Esc

=8.09kBT). Before trying to explain this upturn, we will
study the relative amounts of rings and linear chains.

FIG. 2. Equilibrium size distribution functions under melt con-
ditions sf=1d at various scission energiesEsc. Filled symbols are
the distribution functions of linear chains, open symbols are the
distribution functions of rings. Solid lines are theoretical predictions
for the rings, Eq.(8), usingD=3 andn=1/2.

FIG. 3. Comparison of equilibrium and nonequilibrium size dis-
tribution functions forf=1 andEsc=8.09kBT. Circles are the equi-
librium length distributions of linear chains(filled circles) and rings
(open circles). Diamonds are the length distributions of linear
chains (filled diamonds) and rings(open diamonds) under shear
flow.

FIG. 4. Average aggregation size of linear chains(top figure)
and rings(bottom figure) of the FENE-C model as a function of
shear rate. The lines connect points of equal total concentration
(legend in Fig. 5).
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B. Abundance of closed loops: a nonequilibrium diagram
of states

In equilibrium, the abundance of rings in our model sys-
tem depends on both the scission energyEsc and the concen-
tration f. Let us make clear from the onset that the relative
amount of rings and linear chains is much influenced by the
small L behavior of rings. Because most of the ring mass is
concentrated in the smallest rings, our results generally de-
pend on the chosen cutoffLc. Indeed, many real-life worm-
like micelles have a relatively high persistence length, corre-
sponding to a large value forLc. However, we expect that a
change inLc will only shift the results, leaving the qualitative
picture unchanged.

In Fig. 5 we present the fractionf0/f of the total micellar
mass contained in rings as a function of shear rate for differ-
ent concentrations. In equilibrium, or at very low shear rates,
going from low concentrationsf!f* d to high concentra-
tion sf@f* d, we observe a crossover from a ring-
dominated system, via a system in which rings and linear
chains coexist, to a linear-chain-dominated system. This can
be understood from a thermodynamic argument along the
lines of Eqs.(4) [17], or from a rough kinetic argument.
Under dilute conditions the average distance between micel-
lar chains and rings is large compared to the average size of
a micellar chain or ring. Therefore, once a ring has opened, it
is not very likely that it is in the neighborhood of another
linear chain. In addition, in the dilute regime the average
chain and ring sizes are small, so the amount of(additional)
volume that two newly created chain ends can explore after
being disconnected is relatively small. Therefore, if the sciss-
ion energyEsc is large enough, most of the time the two
newly created chain ends will recombine with one another,
promoting the presence of rings. On the other hand, in con-
centrated solutions there is much overlap between linear
chains and rings. Therefore, once a ring has opened, it is very
likely that it will recombine with another linear chain. In
addition, the average chain sizes are large, so two chain ends
can explore a large volume. This promotes the presence of
linear chains. At the overlap concentration there is a balance
between the above effects, and linear chains and rings are

equally important. Indeed, at the concentrationf=0.16,
which is close to our estimated overlap concentrationf*
=0.20, we findf0/f<0.5 (Table I).

However, it is not ruled out that shear flow may influence
this balance. Indeed, Fig. 5 shows that the fractionf0/f is
increasing with shear rate. Since the total micellar mass is
conserved, the shear flow induces a shift of mass from linear
chains toward rings. This is true for all concentrations, but
because rings are already dominating in the dilute systems,
the effect is most clear for semidilute and concentrated sys-
tems.

More generally, we find that the abundance of rings in our
model system depends on three parameters: the concentra-
tion f, the scission energyEsc, and, as we have seen, the
shear rateġ. In Fig. 6 we present our simulation results for
three scission energies and five concentrations in the form of
a diagram of states. We distinguish between regimes where
rings dominate and regimes where linear chains dominate.
We define the crossover to the ring-dominated regime by the
equality f0=f1=f /2. Configurations with ring dominance
are denoted by circles, systems where linear chains dominate
by squares. The diamonds denote systems where linear
chains dominate in quiescent conditions, but where rings
dominate under rapid shear flow. The solid line is our esti-
mate (by interpolation from the surrounding data) for the
crossover to the ring-dominated regime in equilibrium and
the dashed line is our estimate for the crossover to the ring-
dominated regime forġ=1. Our equilibrium result is quali-
tatively similar to the one reported by Wittmeret al. [17] .
These authors have also studied systems of much higher
scission energies(which we were unable to do because of
our limited system size). For systems containing both linear
chains and rings, they showed that both the crossover con-
centration(as defined byf0=f1=f /2) and the overlap con-
centrationf* (as defined bygsf* d=kLl) reach a plateau at
high scission energies, the former lying slightly below the
latter.

FIG. 5. Fraction of the total micellar mass contained in rings,
f0/f as a function of shear rate. The lines connect points of equal
total concentration.

FIG. 6. A nonequilibrium diagram of states for the FENE-C
model. Indicated are regimes where:(squares) linear chains are
dominating at all shear rates,(circles) rings are dominating at all
shear rates, and(diamonds) linear chains are dominating at low
shear rates, but rings are dominating at high shear rates. The solid
line is the crossover from the ring-dominated to the linear-chain–
dominated regime in equilibrium. The crossover shifts to higher
concentrations with increasing shear rate(dashed line).
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Now, under shear flow(dashed line in Fig. 6) we find that
the crossover shifts to much higher concentrations, well
within the overlap regime. Moreover, the shift is larger for
larger scission energies. In the next section we will try to
explain the observed effects of shear flow.

C. Hypothesis: shear-induced confinement of rings and chains
to two dimensions

We will put forward a possible reason for the increase of
the fraction of rings and the average size of rings under shear
flow. Under rapid shear flow, the chains are stretched toward
the flow direction, while contracting in the gradient direc-
tion. They maintain their equilibrium size, or contract only
slightly, in the vorticity direction. This is true for rings as
well (see Fig. 7). Note that the entropy of a stretched linear
chain or ring is lower than that of the equivalent chain or
ring in equilibrium [20]. More importantly, also the entropy
gain associated with opening a ring will decrease in going
from a quiescent system to a sheared one. This may be un-
derstood from the fact that the entropy gain is proportional to
the logarithm of the ratio of the number of possible confor-
mations for a linear chain and a ring. In equilibrium, the two
chain ends explore a three-dimensional volume. Under rapid
shear, however, we hypothesize that the two chain ends ex-
plore an essentially two-dimensional volume. The decreased
entropy gain will shift the balance in favor of ring formation.

Whether or not a chain will explore an essentially two-
dimensional volume will depend on its size and on the shear
rate. In general, shear flow will start to affect the conforma-
tional properties of a chain of sizeL when the shear rate
becomes larger than the inverse largest relaxation time
tmax

−1 sLd of that chain. Because wormlike micellar systems are
very polydisperse, and because larger rings and chains gen-
erally have larger relaxation times, and vice versa, we expect
that under shear flow there will always be a mixture of three-
dimensional and two-dimensional rings and chains. In fact,
the two-dimensional behavior starts only for those aggre-
gates for whichtmaxsLd is much larger than the inverse shear
rate in order for strong contractions in the gradient direction
to occur.

To test the above hypothesis, we calculate the ratio of ring
and linear-chain distributions against the aggregation number
L. According to Eqs.(4) and(8), using f1=−sg−1dlnsLd, we
expect

c0sLd
c1sLd

~ L−g−DnHsL − Lcd. s9d

So, by investigating the power-law behavior ofc0sLd /c1sLd,
we will be able to discriminate betweenD=3 and D=2
rings. In the strong overlap and melt limitsg=1, n=1/2d,
we expect the exponents to change from −2.5sD=3d to
−2.0 sD=2d. Under dilute conditionssg=1.158,n=0.588d,
we expect the exponents to change from −2.92sD=3d to
−2.33sD=2d.

In Fig. 8 we investigate the melt limit. We plot the ratio
for equilibrium conditions as well as two different shear
rates. The equilibrium data confirm the expected slope of
−2.5 for D=3. In the two nonequilibrium results we recog-
nize a transition from a slope of −2.5 for small rings and
chains to a slope close to −2.0sD=2d for larger rings and
chains. The aggregate sizeLt, where the transition occurs,
decreases fromLt<40 at ġ=0.1 toLt<15 at ġ=1. The de-
crease with shear rate is in agreement with our expectations.

Next, we investigate the dilute limit. In this limit, the
fraction of mass in linear chains is very low. Unfortunately,
because the linear–chain distribution occurs in the denomi-
nator of the ratioc0/c1, the noise also becomes relatively
large in the dilute limit. In Fig. 9 we plot the ratio for equi-
librium conditions and two different shear rates, and all of
them for three different concentrationsf. Note that overlap
effects become apparent only when chains are much larger
than the blob sizeg. Therefore the largest concentrationf
=0.16 can still be used to investigate the dilute scaling be-
havior of the ratioc0/c1, at least up toL<100. Indeed, the
equilibrium data confirm the expected slope of −2.92 forD
=3 for all concentrations up to and includingf=0.16. The
data of all concentrations coincide because the free-energy
difference between rings and linear chains is independent of
concentration in the dilute limit. If we now apply shear, we

FIG. 7. Snapshots of ring configurations in equilibrium(top)
and under rapid shear flow(ġ=0.1, bottom).

FIG. 8. Power-law behavior of the ratio of the length distribu-
tions for rings and linear chains,c0/c1, vs the aggregation numberL
in the melt. In equilibrium, the slope conforms to a power-law
exponent −2.5, as expected for three-dimensional(3D) rings and
chains in the melt. Under shear flow, the slope conforms to a power-
law exponent −2.0 for the larger rings and chains, indicating two-
dimensional(2D) behavior(data vertically shifted). The transition
point from 3D to 2D behavior decreases with increasing shear rate.
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recognize a transition to a slope close to −2.33sD=2d for the
larger rings and chains, again consistent with our hypothesis.

These observations confirm our hypothesis that shear flow
causes a fraction of the system to behave like two-
dimensional rings and chains. This causes rings to become
more abundant and the average ring size to increase at high
enough shear rates. Moreover, at a given shear rateġ and
concentrationf, the effect will become larger for systems
with higher scission energiesEsc, because such systems have
larger average ring and chain sizes already in equilibrium.

The observed effects of shear may enhance the shear
thickening observed in real-life micellar systems with high
enough scission energy and concentrations around or slightly
below the overlap concentration[3,4]. In the next section we
will therefore pay some attention to the rheology of our
model system. We will return to real-life micellar systems in
the Discussion.

V. RHEOLOGY

In many applications, wormlike micelles are used as rhe-
ology control agents. As a consequence, much of the charac-
terization of wormlike micellar solutions is done by means of
rheometry. In a molecular dynamics simulation, the rheology
can be determined by measuring the instantaneous stress ten-
sor. Its components are given by[20]

sab = −
1

V
So

i=1

N

mviav jb + o
i=1

N−1

o
j=i+1

N

rij aFij bD . s10d

Herevia is thea component of the velocity of particlei, r ij a
thea component of the vector from the position of particlej
to particle i, andFij b the b component of the force exerted
by particle j on particlei (we have assumed a pairwise in-
teracting system). The shear viscosityh of a system under-

going planar shear flow in thex direction, with the gradient
in they direction, can be determined from the time-averaged
xy component of the steady–state shear stress,

h =
ksxyl

ġ
. s11d

In Fig. 10 we plot the measured shear viscosity versus
shear rate forEsc=8.09kBT at five different concentrations.
The system displays shear thinning behavior at all concen-
trations. The shear thinning reaches a slope of −0.4(dashed
line) for the highest concentrationf=1. At low shear rates,
the viscosity levels off to a constant value, which is the zero-
shear viscosity. Within the range of shear rates studied, this
plateau is reached for all concentrations but the highest. In
Fig. 10 we have also plotted the shear viscosity of the pure
solvent(f=0, dotted line). We confirm that at low concen-
trations(or all concentrations at high enough shear rate) the
viscosity approaches that of the solvent.

The observed shear thinning behavior is reminiscent of
experimental observations in wormlike micelles. However,
in experiments the shear thinning of the viscosity is much
stronger, with a slope as low as −1 for strongly overlapping
wormlike micelles. This now exposes an important differ-
ence between experimental wormlike micelles and the cur-
rent FENE-C model. In experimental semidilute and concen-
trated systems, the shear stress in equilibrium is dominated
by contributions from the temporary network(or matrix)
formed by the micelles. In other words, the solvent(usually
water) does not contribute significantly to the zero-shear vis-
cosity. Under rapid shear flow, the network becomes strongly
aligned, resulting in excessive shear thinning until the vis-
cosity of the solvent is reached. On the other hand, in the
FENE-C model, excluded volume interactions between sol-
vent spheres are often dominating the network contribution
to the shear stress. This is caused by the fact that, unlike real
solvents, the solvent particles in the FENE-C model are of
the same size and rigidity as the micelle forming particles.
This results in a relatively high solvent contribution to the
shear viscosity.

FIG. 9. Power-law behavior of the ratio of the length distribu-
tions for rings and linear chains,c0/c1, vs the aggregation numberL
for three different dilute concentrations. In equilibrium, the slope
conforms to a power-law exponent −2.92, as expected for dilute 3D
rings and chains. Under shear flow, the slope conforms to a power-
law exponent −2.33 for the larger rings and chains, indicating 2D
behavior(data vertically shifted). The transition point from 3D to
2D behavior decreases with increasing shear rate.

FIG. 10. Total shear viscosityh of the FENE-C model as a
function of shear rate(open symbols). The shear viscosity of the
pure solvent(f=0, closed circles) is also given.
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Steeper shear thinning slopes may be observed in the
FENE-C model when using higher scission energiesEsc.
However, because the solvent contribution will always be
unrealistically high, we expect thatEsc must become unreal-
istically high as well.

Let us now, for an instance, ignore the excluded volume
contributions to the shear stress. In Fig. 11 we have plotted
the viscosityhbond, defined similar to Eq.(11) but with the
stress tensor based on the bonds between micellar monomers
only. Much stronger shear thinning is observed now, with a
slope close to −1(dashed line) for the highest concentration
f=1, in apparent agreement with experimental observations.
Note that the viscosity results for the FENE-C model(ex-
cluding ring formation) presented by Carlet al. [12] were
calculated in a similar way, i.e., disregarding solvent contri-
butions, although the authors did not explicitly state this. As
we have seen, when solvent contributions are included, the
shear thinning effects become much less dramatic.

VI. DISCUSSION AND CONCLUSIONS

We have studied the influence of shear flow on the forma-
tion of rings in wormlike micelles by means of nonequilib-
rium molecular dynamics simulations of the FENE-C model
[11]. As we have already made clear, the results presented
here depend on the smallest ring size allowed, which in re-
ality would be determined by such factors as the chemistry
of the amphiphiles and the bending rigidity of the wormlike
micelles. It has been argued in the literature that rings shorter
than roughly a persistence length are highly unlikely to form
[1]. This might be the reason why rings seem to be unimpor-
tant in some giant micellar systems. On the other hand,
closed loops have been observed(or at least their presence
suggested) in other giant micellar systems[3–5] as well as
other types of equilibrium polymers, such as liquid sulfur
[6]. For such systems, the results we have found will be
relevant, at least in a qualitative way.

For the equilibrium case, i.e., in the absence of shear flow,
we have confirmed the findings of Wittmeret al. [17]: rings
are dominating in dilute solutions, while linear chains are
dominating in strongly overlapping and concentrated solu-

tions and melts. The crossover concentration between the
two regimes is close to the overlap concentration.

We have found that, as a result of shear flow, the cross-
over between ring and linear-chain-dominated regimes in-
creases to higher concentrations(Fig. 6). In other words, at
fixed micellar concentration the shear flow induces a net shift
of micellar mass from linear chains to rings. At the same
time, the average aggregation size of linear chains is decreas-
ing with increasing shear rate, while the average aggregation
size of rings is first decreasing but then increasing. We have
put forward the hypothesis that this increase of ring abun-
dance and size is caused by a decrease of entropy gain asso-
ciated with ring opening under shear flow. The conforma-
tions of large chains and rings, whose typical relaxation
times are much larger than the inverse shear rate, will be
altered significantly by the shear flow. They will be elon-
gated in the flow direction, and, as a result of their finite
extensibility, contracted in the gradient direction. This leaves
an essentially two-dimensional free volume which two newly
created chain ends can explore after being disconnected. We
realize that we have applied(equilibrium) statistical-
mechanical arguments to nonequilibrium conditions. The
relative motion of rings and chains within each layer perpen-
dicular to the gradient direction is slow, however, and quasi-
static arguments may apply. Indeed, we have been able to
substantiate the hypothesis by studying the power-law be-
havior of the ratioc0sLd /c1sLd, which, according to Eq.(9) is
sensitive to the dimensionalityD of the free volume. Our
results are consistent withD=2 for large rings and chains,
although a fractal dimension cannot be excluded; a joint
least-squares fit with the high-L data in Figs. 8 and 9 yields
D=2.1±0.3.

On the rheological side, we have found that the viscosity
is decreasing with shear rate. The shear thinning exponent,
however, is less pronounceds−0.4d than expected from simi-
lar experimental wormlike micelless−1d. The failure of the
model to predict the correct shear thinning behavior is attrib-
uted to the dominance of solvent excluded volume effects in
the FENE-C model. We expect to observe the correct slope
of −1 within the FENE-C model only when much larger
values of the scission energyEsc are used. In that case the
chains will be much longer, the zero-shear viscosity much
higher, and the critical shear rate(where shear thinning be-
gins) much lower, leaving more “room” for shear thinning.

In experiments, wormlike micellar systems are not only
observed to shear thin, but sometimes also toshear thicken
[4]. Although this phenomenon was not observed in our
simulations, we believe we have found a mechanism by
which shear thickening can be explained.

Shear thickening systems are usually just below the over-
lap concentration and typically show a factor of 10 increase
in viscosity around some critical shear rateġc, while below
ġc the viscosity is barely perturbed from its zero-shear value
h0. As already mentioned in the Introduction, Cates and Can-
dau [3] have put forward a speculative scenario in which
large interlinked ringsare driving this shear thickening be-
havior. If the linking and delinking kinetics is sufficiently
slow, a percolating network of interlinked rings will indeed
be able to transfer much more stress. Their scenario may also
explain why shear thickening is only observed near the over-

FIG. 11. Viscosityhbond based on the stress through the bonds
between micellar monomers.
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lap concentration. Far below the overlap concentration the
aggregates, although mainly in the form of rings, do not
overlap or interlink. On the other hand, far above the overlap
concentration there are hardly any rings to interlink: the ag-
gregates are mainly in the form of linear chains which are
entangled with each other. Only at(or slightly below) the
overlap concentration is there a balance between rings and
linear chains.(See Fig. 12 or a cartoon of the three different
concentration regimes under quiescent and sheared condi-
tions.) Cates and Candau described the possibility of a par-
tially percolating structure of interlinked rings in the quies-
cent state, which becomes fully percolating as a result of
shear flow. In order to explain the shear thickening effect
fully, they needed a positive feedback between stress or
strain and ring linking. Our work suggests that one possible
positive feedback mechanism is provided by the shear-
induced confinement of linear chains and rings to a lower
dimensional space, leading to larger and more abundant ring
aggregates. It should be noted that in this work the confine-
ment effects become apparent only at relatively high shear
rates. Experimental micellar systems usually have much
higher scission energies and therefore much larger chains
and rings than the ones studied here. Consequently, relax-
ation times are much larger and critical shear rates for non-
linear behavior are much lower. Moreover, thelargest(rather
than the average) rings will form the percolating network.

This leads us to believe that, in experimental systems, con-
finement effects become important at much lower shear rates
than the ones studied here.

In our simulations shear thickening was not observed. The
root of the problem lies in the fast scission and recombina-
tion kinetics(and thus linking and delinking kinetics) of the
FENE-C model. Recombination is relatively easy in this
model, because chain ends can fuse instantly if their separa-
tion is smaller thanRC (Fig. 1). In reality, before two chain
ends can fuse, there may be specific demands on the confor-
mations of the amphiphiles in the end caps, giving rise to a
free-energy barrier. Chain recombination, like scission, may
therefore be an activated process. A typical value for the
height Ea of the free-energy barrier may be estimated from
experiments on EHAC wormlike micelles[22,23], yielding
Ea<12.5kBT. Such a high activation barrier will substan-
tially decrease the rate with which wormlike micelles are
breaking up. As a consequence, the linking and delinking
kinetics of rings inreal wormlike micelles can be very slow,
opening up the route to shear thickening behavior.

We can finally conclude that the FENE-C model has
taught us a lot about the equilibrium and nonequilibrium
behavior of flexible wormlike micelles. The original
FENE-C model can still be motivated by the fact that the
equilibriumdistributions should be unaffected by any recom-
bination activation barrier. However, great care must be
taken if realistic and quantitative results for thedynamicsand
rheology of wormlike micelles are required. Currently, we
are developing a model in which a significant recombination
activation barrier will be incorporated, and where the solvent
contribution to the stress tensor will be negligible(Brownian
dynamics). Another step towards realism concerns the persis-
tence length. Usually the persistence length of a wormlike
micelle is much larger than its diameter[8]. This may be
modeled by means of a bending potential between the
(spherical) beads, as in Ref.[13]. Unfortunately, this quickly
becomes very CPU-intensive, as many beads will be required
to represent just one persistence length of a realistic worm-
like micelle. We will therefore represent wormlike micelles
by long and thin segments, each segment measuring an entire
persistence length. We will deal with the uncrossability of
such segments by means of the TWENTANGLEMENT
method, details of which can be found in Ref.[24].

ACKNOWLEDGMENTS

We thank John Crawshaw for careful reading of the
manuscript. J.T.P. is financially supported by a grant from the
U.K. Engineering and Physical Sciences Research Council
(EPSRC) through the IMPACT Faraday Partnership Pro-
gramme.

[1] Micelles, Membranes, Microemulsions, and Monolayers, ed-
ited by W. M. Gelbart, A. Ben-Shaul, and D. Roux(Springer-
Verlag, New York, 1994).

[2] M. E. Cates and S. J. Candau, J. Phys.: Condens. Matter2,

6869 (1990).
[3] M. E. Cates and S. J. Candau, Europhys. Lett.55, 887(2001).
[4] Cl. Oelschlaeger, G. Waton, E. Buhler, S. J. Candau, and M. E.

Cates, Langmuir18, 3076(2002).

FIG. 12. Cartoon of wormlike micellar configurations in quies-
cent and sheared conditions. Forf!f* (top figure) many rings are
present, but they do not overlap. Forf@f* (bottom figure) hardly
any rings are present. Only near the overlap concentration(middle
figure) enough rings may be present which can interlink, increas-
ingly so, under shear flow.

INFLUENCE OF SHEAR FLOW ON THE FORMATION OF… PHYSICAL REVIEW E 70, 031502(2004)

031502-9



[5] T. M. Clausen, P. K. Vinson, J. R. Minter, H. T. Davis, Y.
Talmon, and W. G. Miller, J. Phys. Chem.96, 474 (1992); M.
In, O. Aguerre-Chariol, and R. Zana,ibid. 103, 7747(1999);
A. Bernheim-Groswasser, R. Zana, and Y. Talmon,ibid. 104,
4005 (2000).

[6] R. G. Petschek, P. Pfeuty, and J. C. Wheeler, Phys. Rev. A34,
2391 (1986).

[7] H. Rehage, I. Wunderlich, and H. Hoffmann, Prog. Colloid
Polym. Sci. 72, 11 (1997).

[8] E. S. Boek, W. K. den Otter, W. J. Briels, and D. Iakovlev,
Philos. Trans. R. Soc. London, Ser. A362, 1625(2004).

[9] R. Goetz and R. Lipowsky, J. Chem. Phys.108, 7397(1998).
[10] W. K. den Otter, S. A. Shkulipa, and W. J. Briels, J. Chem.

Phys. 119, 2363(2003).
[11] M. Kröger and R. Makhloufi, Phys. Rev. E53, 2531(1996).
[12] W. Carl, R. Makhloufi, and M. Kröger, J. Phys. II7, 931

(1997).
[13] M. Kröger, Macromol. Symp.133, 101 (1998).
[14] M. Kröger, Phys. Rep.390, 453 (2004).

[15] M. P. Allen and D. J. Tildesley,Computer Simulation of Liq-
uids (Clarendon, Oxford, 1987).

[16] F. Zhang, D. J. Searles, D. J. Evans, J. S. den Toom Hansen,
and D. J. Isbister, J. Chem. Phys.111, 18 (1999).

[17] J. P. Wittmer, P. van der Schoot, A. Milchev, and J. L. Barrat,
J. Chem. Phys.113, 6992(2000).

[18] P. G. de Gennes,Scaling Concepts in Polymer Physics(Cor-
nell University, Ithaca, New York, 1979).

[19] S. Caracciolo, M. S. Causo, and A. Pelissetto, Phys. Rev. E
57, R1215(1998).

[20] M. Doi and S. F. Edwards,The Theory of Polymer Dynamics
(Clarendon, Oxford, 1986).

[21] K. Kremer and G. S. Grest, J. Chem. Phys.92, 5057(1990).
[22] I. Couillet, T. Hughes, G. Maitland, F. Candau, and S. J. Can-

dau (unpublished).
[23] J. T. Padding and E. S. Boek, Europhys. Lett.66, 756 (2004).
[24] J. T. Padding and W. J. Briels, J. Chem. Phys.115, 2846

(2001).

J. T. PADDING AND E. S. BOEK PHYSICAL REVIEW E70, 031502(2004)

031502-10


